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Abstract
We examine the critical system parameters which affect the quantum Zeno–
anti-Zeno transition in a spin–boson system by applying the notion of correlated
Zeno subspaces beyond the qubit system to its decayed part represented by a
collective reservoir of oscillators. We also examine the effect of coherent
control via a periodic sequence of dynamical decoupling pulses prior to
projective measurement. Our results show that depending on the system bias
and measurement time interval of the spin–boson model, coherent control via
periodic dynamical decoupling pulses eliminates the Zeno–anti-Zeno transition
behavior. We extend the calculations to examine the entanglement dynamics of
two initially entangled qubits coupled to independent reservoirs with varying
configuration and subjected to frequent measurements. In a multipartite system,
in which one or more qubit–reservoir system can undergo the Zeno–anti-Zeno
transition, we show that the effects of measurements made in a one qubit–
reservoir subsystem can reverberate noticeably throughout a whole array of N
pairs of qubit–reservoir subsystems.

PACS numbers: 03.65.Xp, 03.65.Yz, 03.65.Ud, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The quantum Zeno effect (QZE) describes the retarded time evolution of a quantum state
subjected to frequent measurements [1–3]. In the limiting case of continuous measurement,
the time evolution of the state is expected to come to a standstill. The opposite effect which
leads to enhancement in time evolution is known as anti-Zeno effect (AZE) and has been
observed to be much more ubiquitous than the Zeno effect [4, 5]. In unstable systems,
the occurrence of both QZE and AZE depends on critical parameters, such as measurement
frequencies and environmental noise [6, 7]. In recent years, experimental demonstrations of
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the QZE [8, 9] have been driven by interest in practical applications such as the reduction of
decoherence in quantum computing systems [10–12].

The spin–boson is a very well known model where a two-level system is coupled to a
reservoir of harmonic oscillators and is useful in quantifying salient aspects of dissipative
dynamics of many quantum systems [13, 14]. Factors such as spectral density, bias and
temperature which determine decoherence [15, 16] are also seen to play a critical role in the
fine interplay of the QZE and AZE in the spin–boson model [17]. In this work, we analyze the
dependence of the Zeno–anti-Zeno transition point on critical parameters of the spin–boson
model. We specifically chose this model as the features of the Zeno–anti-Zeno transition have
recently been shown to be highly prominent in bosonic spin-bath systems [17].

It is important to note the two seemingly different criteria used to specify the quantum
Zeno–anti-Zeno transition point in the literature. In the first approach by Facchi et al [18],
an effective decay rate γ (τ) measured at t = τ is compared to the natural decay rate γ0

which does not involve measurement. A γ (τ) smaller than γ0 is attributed to the Zeno effect
while γ (τ) larger than γ0 is attributed to the anti–Zeno effect. The transition point occurs at
the intersection of the effective decay rate at a specific time known as jump time [18]. In an
alternate scheme proposed by Kofman and Kurizki [4, 5], the emphasis is on the rate of change
of effective decay rate with respect to frequency of measurement unlike a direct comparison
with the natural decay rate.

Kofman and Kurizki’s formalism involves the convolution of two functions: a
measurement function and a reservoir coupling function dependent on the spectral density
of states of the reservoir [5]. The occurrence of the QZE or AZE is easily explained [5] by
changes in the overlap between the two functions as τ is varied. The QZE (AZE) occurs when
the overlap of functions decreases (increases) with the decrease in τ . At the critical crossover
point, there is no net change in the overlap function, the decay rate stops momentarily and
the criterion for the Zeno–anti-Zeno crossover is given by ∂γ /∂τ = 0. A similar relation
was obtained by Pati et al [19] who showed the relation between the survival probability and
speed of transportation of a system point on the projective Hilbert space. Thus, measurements
made with a time interval less than a critical time duration (transition point) slows down decay
whereas those made using a time interval larger than the critical time interval speed up the
decay of a quantum state. Kofman and Kurizki’s approach is convenient in cases where the
existence of a jump time (which can be very small in many unstable systems) is difficult to
determine. Kofman and Kurizki’s approach also provides a neat explanation for anti–Zeno
effects which exist wherever there is a large detuning between the peaks of the measurement
function and reservoir coupling function. This latter point will be illustrated for the spin–boson
model in section 3.1.

We next study the effects of dynamical decoupling schemes [20–22] on the Zeno–anti-
Zeno transition regime. During the process of dynamical decoupling, a quantum system is
subjected to several successive (periodic, random or recursive) strong ultrafast pulses which
offset any undesirable decoherence due to an environment represented by the surrounding
reservoir. The interaction between the qubit spin and boson reservoir is generally assumed
to be linear in the amplitude of the boson field. This approach is based on the time reversal
of the decoherence process in a short-time scale comparable to the reservoir correlation time.
Efforts to enhance this scheme, which does not involve collapse of the wavefunction which
otherwise occurs during measurement, have grown rapidly due to its potential applications in
quantum information processing. Recent works [23, 24] on the dynamic control of decay via
2π pulses have shown that the decay can in fact be accelerated depending on reservoir and
pulsing properties. In our work here, we specifically examine the effect of coherent control via
periodic dynamical decoupling pulses [21] on the occurrence of a Zeno–anti-Zeno crossover.
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Finally, we extend results obtained in the first section to examine the conditions under
which Zeno or anti-Zeno effects present in several qubit–reservoir systems influence the
overall entanglement of multipartite systems. We also consider entanglement sudden death
(birth) which is the finite-time loss (gain) of quantum correlation due to independent reservoirs
coupled to the two qubits with regard to the Zeno–anti-Zeno transition [25, 26]. The strength
of coupling between qubit and reservoir, number of subsystems, measurement procedures
as well as the initial configuration of qubit–resevoir systems are shown to be critical factors
in the entanglement properties of multipartite systems. Thus, the effect of a measurement
process in one qubit–reservoir subsystem is felt throughout the whole array of qubit–reservoir
subsystems, and we demonstrate this quantitatively via use of the Meyer–Wallach measure for
general N pairs of qubit–reservoir systems.

2. Zeno–anti-Zeno transition in spin–boson systems

Various approximation schemes [27–29] are commonly used to study spin–boson problems
involving both strong and weak coupling to the reservoir. A common approach involves
examining the dynamics of the density matrix contained in the Liouville equation

∂ρ

∂t
= −i[Ĥ T, ρ(t)], (1)

where the total Hamiltonian of a two-level qubit system Ĥ T = Ĥ qb + Ĥ os + Ĥ qb–os. Ĥ qb of
the two-level qubit is of the form

Ĥ qb = h̄

(
��

2
σz + �σx

)
, (2)

where the Pauli matrices are expressed in terms of the two possible states (|0〉, |1〉),
σx = |0〉〈1| + |1〉〈0| and σz = |1〉〈1| − |0〉〈0|. �� is the biasing energy while � is the
tunneling amplitude. Each qubit is coupled to its own reservoir of harmonic oscillators
Ĥ os = ∑

q h̄ωq b
†
q bq where b

†
q and bq are the respective creation and annihilation operators

of the quantum oscillator with the wave vector q. We consider the qubit–oscillator interaction
Hamiltonian to be linear in terms of oscillator creation and annihilation operators:

Ĥ qb−os =
∑

q

λq
(
b†

q + bq
)
σz, (3)

where λq is the coupling between the qubit and the environment and is characterized by the
spectral density function, J (ω) = ∑

q λ2
qδ(ω − ωq). Here, we consider the density functions

to be of the ohmic form J (ω) = 2πηω e− ω
ωc where η is the dimensionless reservoir coupling

function. ωc is the reservoir cutoff frequency and is generally assumed to be the maximum
allowed frequency. For simplicity in analysis of the entanglement dynamics, we exclude
the measuring device from the total Hamiltonian Ĥ T = Ĥ qb + Ĥ os + Ĥ qb−os. The reservoir
therefore constitutes a part of the dynamical system that is monitored by the measuring device
which serves only as a projection operator that disrupts the normal evolution of the Hamiltonian
Ĥ T. This treatment is consistent with the viewpoint [30] that the presence of a macroscopic
apparatus is not a prerequisite to the measurement process.

At t = 0, the reservoirs associated with the two qubits are uncorrelated. Each qubit
decays to oscillator states in the reservoir when measurements are made, making a transition
from its excited state |1〉q to the ground state |0〉q. We consider an initial state of the qubit with
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its corresponding reservoir in the vacuum state, existing in equilibrium at temperature T =
0 K:

|φi〉 = |1〉q ⊗
N ′∏

k=1

|0k〉r = |1〉q ⊗ |0〉r, (4)

where |0〉r implies that all N ′ wavevector modes of the reservoir are unoccupied in the initial
state. |φi〉 then undergoes the following mode of decay:

|φi〉 −→ u(t) |1〉q|0〉r + v(t) |0〉q|1〉r. (5)

In order to keep the problem tractable, we consider that |1〉r denotes a collective state of the
reservoir as follows:

|1〉r = 1

v(t)

∑
n

λ{n}(t)|{n}〉, (6)

where {n} denotes an occupation scheme in which there are ni oscillators with the wavevector
k = i in the reservoir, and we define the state |{n}〉 as

|{n}〉 = |n0, n1, n2, . . . , ni, . . . , nN ′ 〉. (7)

In the collective reservoir state, oscillators can be present at all allowed modes, including
simultaneous excitation of several bosonic states. At non-zero temperatures, the reservoir state
is a Boltzmann weighted average over all possible permutations of the occupation scheme {n}.
In the absence of any form of coupling between the qubit and reservoir oscillator, transitions
between the states |{n}〉 and |{n′}〉 where n �= n′ are not allowed due to orthogonal properties
of oscillator functions. This is a critical property as it confines the evolution of the initial
reservoir state |0〉r to its quantum Zeno subspace, as long as the qubit remains in its initial
state |1〉q. The definition of the collective state of the reservoir in equation (7) obviously gives
rise to entanglement between the qubit and reservoir state. We next describe in detail the
important concept of quantum zeno subspaces.

2.1. Quantum Zeno subspaces

Following [1, 31], we use the von Neumann projection operator P to formulate measurement
procedures in the Hilbert space H of a quantum system, S. The initial density matrix ρ0 of
the system S is constrained within HP as ρ0 = Pρ0P, Tr[ρ0P] = 1. In the absence of any
measurement, the state evolves as ρ(t) = U(t)ρ0U

†(t) where U(t) = exp(−iH�t), and H�

is a time-independent Hamiltonian. The probability that the system remains within HP is
given by P(t) = Tr (U(t)ρ0U

†(t)P). In the event of measurement at time τ , the density
matrix ρ(τ) becomes ρ(τ) = 1

P(τ)
PU(τ)ρ0U

†(τ )P . The survival probability in HP becomes

P(τ) = Tr (V (τ)ρ0V
†(τ )) where V (τ) ≡ PU(τ)P . For the case of measurements at time

intervals τ = t/N , the survival probability is given by

P (N)(t) = Tr
(
VN(t)ρ0V

†
N(t)

)
, VN(t) =

[
V

(
t

N

)]N

. (8)

At very large N, no transitions allowed outside HP occur and P (N)(t) → 1, the culmination
of the mathematical formulation of the Zeno effect.

The functions u(t) and v(t) in equation (5) satisfy the relation u(t)2 + v(t)2 = 1. We
identify the square of the function u(t) with the survival probability of the qubit associated
with N measurements performed at regular intervals τ via the relation

P(t) = u(t)2 = exp(−N�2τ 2/4) (9)

4



J. Phys. A: Math. Theor. 43 (2010) 155301 A Thilagam

with time t = Nτ . In the extreme limit τ → 0, u(t) → 1 and the decay into oscillator
states is totally inhibited. Equations (8) and (9) embody the powerful effect of a measurement
process in itself, where a system monitored to determine whether it remains in a particular state
resists making transitions to alternate states. This idea has been studied using an adiabatic
theorem [31] in which different outcomes are eliminated and the system evolves as a group of
exclusive quantum Zeno subspaces within the total Hilbert space. The initial state remains in
a particular invariant subspace which ensures that the survival probability remains unchanged
from its value of one. The time evolution within the projected Zeno subspace gives rise to
quantum Zeno effects [1] as mathematically formulated in equation (8). The time invariance
property associated with the Zeno effect may have implications for equivalent processes
which lead to the existence of decoherence free subspaces widely discussed in the literature
[32].

The interaction Hamiltonian term Ĥ qb–os in equation (3) gives rise to intriguing effects
of the measurement process by governing the dynamical evolution of quantum systems. This
term has a decomposing effect on the total Hilbert space which is partitioned into orthogonal
quantum Zeno subspaces [31] mentioned earlier. The qubit system is then constrained into
predestined paths within each invariant subspace. Likewise we invoke the notion of Zeno
subspaces beyond the qubit system to its decayed part represented by the collective reservoir.
We note that corresponding to the invariant subspace occupied by the initial qubit state |1〉q,
there exists an invariant Zeno subspace associated with the initial reservoir state |0〉r in which
all modes are unoccupied. Importantly this Zeno subspace remains orthogonal to subspaces
where second-order processes exist, by virtue of the othorgonality. Such processes give rise to
exchanges between oscillators and overall changes in the ensemble configuration of oscillators
in the reservoir. This implies that when the qubit is measured in the initial state |1〉q at t = τ ,
the reservoir also remains in its initial state |0〉r by virtue of the orthogonality of oscillator
functions in the defined reservoir state in equation (7). This ensures that the invariance of
P0(τ ) at equidistant measurement intervals remains intact. A thorough mathematical analysis
of the joint evolution of the qubit and reservoir system and the time evolution within the
correlated subspace can be examined using the idea of entangled Zeno subspaces, however, it
is beyond the scope of work here.

It is easy to identify an effective relaxation rate for the two-level qubit that is reliable at
short times, γ (τ) = N(�/2)2τ . The decay of a quantum state interacting with a reservoir
is almost zero at the beginning of the decay process as is well known in the QZE. In the
cases of intermediate measurement time intervals, the decay of the quantum state may be
accelerated as is the case in anti-Zeno effect (AZE). These effects are however not evident
in the short time range associated with equation (9), in which the fine interplay between
the measurement procedure and the reservoir coupling function is not fully incorporated.
Therefore, in the next section, we utilize the numerical scheme introduced by Kofman
and Kurizky [4, 5] to estimate γ (τ) and to reveal the interesting quantum Zeno–anti-
Zeno transition effects inherent in a spin–boson system. This scheme will be crucial in
studying the entanglement dynamics of qubit–reservoir systems subjected to different modes
of measurements characterized by τ . It is important to note that only the time duration (instead
of frequency) of measurement is altered and its effect analyzed in figures obtained in this
work.

3. Effective decay rate using Kofman and Kurizky’s formalism

The effective decay rate for small values of τ is evaluated as a convolution of two functions
[4, 5]:

5
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Figure 1. (a) Survival probability P(τ) as a function of the time duration τ and the bias �� after
the first measurement at T = 0 K, � = 0.6, η = 0.05 and ωc = 1. (b) Survival probability P(τ)

as a function of the time interval τ and the reservoir coupling function η at T = 0 K, � = 0.6,
ωc = 1 and bias �� = 0.65.

γ (τ) = 2

(
�

2

)2 ∫ ∞

0
dω K(ω)Fτ (ω − ��), (10)

where the function Fτ (ω − ��) = τ
2π

sinc2
[

(ω−��)τ

2

]
and is associated with measurements

at intervals of τ . The reservoir coupling function K(ω) is evaluated using

K(ω) =
∫ ∞

0
eiωt cos[�� + G1(t)] e−G2(t) dt, (11)

where

G1(t) =
∫ ∞

0
dω

J(ω)

ω2
sin ωt

G2(t) =
∫ ∞

0
dω

J(ω)

ω2
coth

[
βω

2

]
(1 − cos ωt)

(12)

where β = 1
kBT

and T is the lattice temperature. Using explicit expressions for G1(t) and
G2(t) given in [13, 14] for an ohmic J (ω), it can be shown that K(ω) is strongly dependent
on the reservoir coupling function η and the exponential cutoff frequency ωc, and of the
form K(ω) ≈ (

ω
ωc

)2η−1
exp(−ω/ωc). Figure 1(a) shows the numerical results of the survival

probability P(t) = exp(−γ (τ)t) after the first measurement (N = 1) at zero temperature,
tunneling amplitude � = 0.6, reservoir coupling function η = 0.05 and ωc = 1. We note
that an increase in the frequency of measurement corresponds to a decrease in time duration
between measurements. Figure 1(a) shows that the crossover from the QZE to AZE becomes
increasingly pronounced as τ is increased, provided the spin–boson system experiences weak
spin–boson coupling η as illustrated in figure 1(b). It is interesting to note that Zeno to anti-
Zeno features are revealed even with the first measurement. Hence, higher biasing energies
�� and lower η increase the probability of the Zeno–anti-Zeno transition, which occurs at
∂P (t)/∂τ = 0. Due to the highly prominent Zeno–anti-Zeno transition for a weakly coupled
system (η ∼ = 0.05), we focus on the entanglement properties of the weakly coupled system in
section 5 associated with measurement procedures. It is to be noted that the theory established
so far is applicable at non-zero temperatures; however, we have specifically chosen T = 0 K
for ease of numerical computation for all figures in this work.

6
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A natural decay rate γ0 at T = 0 K can be obtained by noting Fτ (ω) → 1 as τ → ∞
γ0 = �2

2

��2η−1

�(2η)
exp(−��) (13)

where we have used ωc = 1. For the bias range 0.1 � �� � 0.8, � = 0.6 and η = 0.05 (same
parameters as used in figure 1), we obtain very small γn(τ ) � 0.1 that hardly compares with
the rich Zeno dynamics revealed via Kofman and Kurizky’s formalism. This demonstrates that
γn(τ ) is not a suitable reference to predict the Zeno–anti-Zeno dynamics in the spin–boson
model considered here.

3.1. Effect of dynamical decoupling on the Zeno–anti-Zeno transition

Here, we consider a two-level qubit system to be subjected to M successive optical π pulses of
very short duration before projective measurement is performed. The first π -pulse rotates the
qubit state vector through an angle π about the x-axis, while the second pulse inverts the state
vector back to its initial state. Under the action of two π pulses, the reversal of time evolution
of the qubit system is achieved, assuming decay times in the non-Markovian dynamics regime
[20]. The Hamiltonian representing the dynamic decoupling pulses is written as [21, 33, 34]

Ĥpul =
M∑

n=1

Vn(t) ei ��
2 tσz σx e−i ��

2 tσz , (14)

where a periodic sequence of M equidistant ideal π -pulses are applied at times tM = M�t

and �t denotes the inter-pulse separation time. In the presence of the dynamic decoupling
pulses, the spectral function Fτ (ω) in equation (10) modifies as

F ′
τ (ω) = Fτ (ω) tan2 ω�t

2
. (15)

We set τ = 2M�t + δt where δt is a very short time lapse to ensure that the last control
pulse precedes measurement. The dynamic decoupling pulse term tan2 ω�t

2 in equation (15)
suppresses decoherence [21] at low frequencies ωu = 2Mπ/(τ −δt) ≈ 2Mπ/τ and enhances
decoherence at higher frequencies ωu ≈ 3Mπ/τ depending on the cutoff frequency and
the form of spectral density function, J (ω) [33]. Figure 2 shows numerical results of the
decay rate γ (τ) evaluated using equation (10) with a modified measurement function F ′

τ (ω)

(equation (15)) at T = 0 K, M = 1 or M = 3 and for two values of the bias �� = 0.35, 0.5.
At M = 1, the two upper frequency limits of ωu = 2Mπ/τ and ωu = 3Mπ/τ are used
during numerical computations. We note that M = 1 denotes the application of two π -pulses
before the instant measurement is performed. The low cutoff frequency ωu = 2Mπ/τ yields
lower decay rates as expected. We note that the M π -pulses are equally spaced out; hence,
an increase of M implies a corresponding decrease in the inter-pulse separation time �t . This
results in detuning of central frequencies of the coupling function K(ω) and measurement
function F ′

τ (ω), giving rise to changes in the spectral overlap between the two functions.
Figure 3 clearly illustrates the decrease of the overlap function O as M is increased from one
to two at weak bias �� = 0.35. This explains the notable suppression of decay at higher M
values. At a higher �� = 0.5, F ′

τ (ω) experiences increased oscillatory peaks which results in
shifts such that the overlap of the two functions increases at larger τ , contrary to the situation
at low bias.

It is to be noted that there remains the possibility of the Hamiltonian in equation (14)
leading to the formation of a nontrivial subspace in itself, thus presenting with a complicated
structure the analysis carried out in figure 2. We believe that the existence of subspaces
associated with equation (14) may give rise to interesting effects that may be verified via
experimental work.
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Figure 2. (a) γ (τ) evaluated using equations (10) and (15) at T = 0 K, M = 1, upper frequency
cutoff limit ωu = 3Mπ/τ (dot-dashed), ωu = 2Mπ/τ (dotted) and M = 3, ωu = 3Mπ/τ

(dashed). η = 0.1, ωc = 1 and bias �� = 0.35 apply for all curves. The solid line denotes
evaluation of γ (τ) in the absence of dynamical decoupling pulses. (b) Same parameters as in
(a) above except that the bias is increased, �� = 0.5.

4. Concurrence as a measure of counteracting Zeno–anti-Zeno effects

We now consider the joint evolution of a pair of two-level qubit systems in uncorrelated
reservoirs subjected to distinct measurement procedures with differing values of the time
interval τ . We first consider the following initial state:

|�〉0 = [a|0〉q1|0〉q2 + b|1〉q1|1〉q2]|0〉r1|0〉r2, (16)

where i = 1, 2 denote the two qubit–reservoir system’s associated function ui(t) (see
equation (5)). Each function ui(t) corresponds to the measurement parameter τi . a, b are real
coefficients and satisfy a2 + b2 = 1. The state |�〉0 evolves as a multipartite state influenced
by the real coefficients a and b, similar to the process considered in our earlier work [35].
Using the conversion rule given in equation (5), we obtain for instance the following evolution
for terms associated with coefficient b:

b|1〉q1|1〉q2|0〉r1|0〉r2 → b[u1(t)|1〉q1|0〉r1 + v1(t)|0〉q1|1〉r1]

× [u2(t)|1〉q2|0〉r2 + v2(t)|0〉q2|1〉r2]. (17)

Using both terms of (16) and tracing out the reservoir states, we obtain a time-dependent
qubit–qubit reduced density matrix in the basis (|0 0〉, |0 1〉|1 0〉|1 1〉):
8
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Figure 3. (a) Overlap O of spectral functions K(ω) and F ′
τ (ω) for T = 0 K, η = 0.2, bias

�� = 0.35, τ = 6 and ωc = 1. Three cases with (a) maximum overlap in the absence
of dynamical decoupling pulses, dynamical decoupling pulses applied with (b) M = 1 and
(c) M = 2.

ρq1,q2(t) =

⎛
⎜⎜⎝

f1(t) 0 0 f5(t)

0 f2(t) 0 0
0 0 f3(t) 0

f5(t) 0 0 f4(t)

⎞
⎟⎟⎠ (18)

where for t � 0, the matrix elements evolve as

f1(t) = a2 + b2 v1(t)
2 v2(t)

2, f2(t) = b2 v1(t)
2 u2(t)

2,

f3(t) = b2 u1(t)
2 v2(t)

2, f4(t) = b2 u1(t)
2 u2(t)

2,

f5(t) = a b u1(t) u2(t).

(19)

9



J. Phys. A: Math. Theor. 43 (2010) 155301 A Thilagam

The reservoir–reservoir reduced density matrix ρr1,r2 is obtained by tracing out qubit states:

ρr1,r2(t) =

⎛
⎜⎜⎝

g1(t) 0 0 g5(t)

0 g2(t) 0 0
0 0 g3(t) 0

g5(t) 0 0 g4(t)

⎞
⎟⎟⎠ (20)

where the functions gi are obtained from fi via the swap ui ↔ vi . Thus, the reduced bipartite
density matrices ρq1,q2 and ρr1,r2 possess forms which are complementary to each other. These
matrices also have simple forms with the well-known X-state structure which preserves its
form during evolution. In order to study the QZE and AZE on the bipartite entanglements,
we evaluate the well-known property of concurrence [36] for the appropriate density matrix
using C(t) = max{0,

√
λ1 −√

λ2 −√
λ3 −√

λ4} where λi are eigenvalues in decreasing order
of the Hermitian matrix ρ̃ = ρ

(
σ 1

y ⊗ σ 2
y

)
ρ∗(σ 1

y ⊗ σ 2
y

)
where σy belongs to the set of Pauli

matrices. ρ∗ denotes the complex conjugation of ρ in the standard basis equation (18). We
obtain the following concurrence for the bipartite partition of the two qubits as well as their
reservoir counterparts for c = d = 0:

Cq1,q2(t) = 2b e− 1
2 (γ1+γ2)t

[
a − b(1 − e−γ1t )

1
2 (1 − e−γ2t )

1
2
]

Cr1,r2(t) = 2b(1 − e−γ1t )
1
2 (1 − e−γ2t )

1
2
[
a − b e− 1

2 (γ1+γ2)t
]
.

(21)

For γ1 = γ2 = γ , we obtain simple expressions for the critical measurement time duration
which leads to entanglement sudden death (ESD) and sudden birth (ESB) of qubit–qubit and
reservoir–reservoir bipartite interactions respectively:

tq1,q2 = − 1

γ (τ)
log

[
1 − a

b

]
, (22)

tr1,r2 = − 1

γ (τ)
log

[a

b

]
. (23)

The effect of combining subsystems with different bias ��2 and subjected to measurement
with varying time interval τ on the qubit–qubit concurrence Cq1,q2(τ ) and reservoir–reservoir
concurrence Cr1,r2(τ ) is shown in figure 4. The figure is plotted using numerical results of
the survival probability P(τ) = exp(−γ (τ)τ ) at a tunneling amplitude � = 0.6, η = 0.05,
ωc = 1, N = 1, initial state amplitude a = 1√

5
and fixed first subsystem bias of ��1 = 0.7.

These results show that the entanglement properties between two qubits can be altered by
an appropriate choice of the time interval τ and system parameters such as the bias ��.
Figure 4(b) also shows that the birth and subsequent death of the reservoir–reservoir bipartite
interaction become prominent at higher values of the bias ��2 associated with the second
subsystem. At b = 2a (i.e. a = √

1/5), the death events associated with the bipartite partition
matrix ρq1,q2 coincide with birth events for its counterpart partition matrix ρr1,r2. The notable
change in entanglement dynamics with an initial state amplitude a = √

1/μ where μ is
varied is illustrated in figures 5(a) and (b). At high enough bias values for both subsystems
and a selected range of μ, the Zeno–anti-Zeno transition gives rise to rebirth in qubit–qubit
concurrence Cq1,q2(τ ). We also note that the reservoir–reservoir concurrence Cr1,r2(τ ) is short-
lived for 6 < μ < 8, but becomes dominant at lower μ values. Next, we consider a second
class of the initial state of the following form:

|�〉0 = [c|0〉ex1|1〉ex2 + d|1〉ex1|0〉ex2]|0〉r1|0〉r2, (24)

10
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Figure 4. (a) Three-dimensional plot of the two-qubit concurrence Cq1,q2(τ ) as a function of
the measuring parameter τ and subsystem bias ��2 for the initial state of equation (16) with
a = √

1/5 and fixed first subsystem bias of ��1 = 0.7. We have taken a tunneling amplitude
� = 0.6, η = 0.05, ωc = 1 and N = 1. (b) Two-reservoir concurrence Cr1,r2(τ ) as a function
of the measuring parameter τ and subsystem bias ��2. All other parameters remain the same as
in (a).
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Figure 5. (a) Two-qubit concurrence Cq1,q2(τ ) as a function of the measuring parameter τ and
initial amplitude parameter μ (a = √

1/μ in equation (16)) at subsystem bias ��1 = ��2 = 0.6,
tunneling amplitude � = 0.6, η = 0.05, ωc = 1 and N = 1. (b) Two-reservoir concurrence
Cr1,r2(τ ) as a function of the measuring parameter τ and initial amplitude parameter μ. All other
parameters remain the same as in (a).

where i = 1, 2 denote the two qubit–reservoir systems with associated functions ui(t). As
in the case of equation (19), we trace out the reservoir states to obtain a time-dependent
exciton–exciton reduced density matrix

ρq1,q2(t) =

⎛
⎜⎜⎝

f1(t) 0 0 0
0 f2(t) f4(t) 0
0 f4(t) f3(t) 0
0 0 0 0

⎞
⎟⎟⎠ (25)

where for t � 0, the matrix elements evolve as

f1(t) = c2 v2(t)
2 + d2 v1(t)

2,

f2(t) = c2 u2(t)
2, f3(t) = d2 u1(t)

2,

f4(t) = cd u1(t)u2(t).

(26)

11
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The concurrence for the bipartite partition of the two qubits as well as their reservoir
counterparts can be evaluated respectively as Cq1,q2(t) = 2cd e− 1

2 (γ1+γ2) and Cr1,r2(t) =
2cd(1 − e−γ1t )

1
2 (1 − e−γ2 t)

1
2 . For this case, we note that the qubit–qubit bipartite interactions

are immune from sudden death events due to measurement procedures. Due to normalization
and positivity conditions associated with the X-state structured matrix, the partitions associated
with c = d = 0 and a = b = 0 are not satisfied simultaneously.

5. Meyer–Wallach measure of N pairs of the qubit–reservoir system

In this section, we extend the analysis of two pairs of the qubit–reservoir system to a general
N pair by considering the Meyer–Wallach (MW) measure with a generalized function ui for
the pair of qubit–reservoir system in equation (16). This monotone measure was defined by
Meyer and Wallach [37] as a single scalar measure of pure state entanglement for the three-
and four-qubit cases:

Q = 1

n

n∑
k=1

2
(
1 − Tr

[
ρ2

k

])
, (27)

where ρk is the reduced density matrix of the kth qubit obtained after tracing out all the
remaining qubits. While the MW measure has drawbacks in that it is unable to distinguish
states which are fully inseparable from states which are separable into states of some set of
subsystems, we will utilize it as a crude quantity to analyze qualitative features associated
with the Zeno–anti-Zeno crossover in spin–bath systems.

For c = d = 0, the simple forms for the one-qubit reduced density matrices allow us to
obtain an explicit expression of the MW measure of N pairs of qubit–reservoir systems:

Q = 2a2b2 + 4b2u2v2 (28)

where we have assumed that ui = u for all the N pairs. The maximum Q = 1 is obtained
for a = 0, b = 1 with u1 = u2 = 1√

2
. For the case of N pairs of equivalent qubit–reservoir

systems for which ui = u1 and S pairs of equivalent qubit–reservoir systems for which ui = u2,
(u1 �= u2) we obtain

Q = 2N

N + S
(a2b2 + 2b2u1

2v1
2) +

2S

N + S
(a2b2 + 2b2u2

2v2
2). (29)

Figure 6 shows the change of the Meyer–Wallach measure Q with τ for various combinations
of N and S and for two values of the initial state amplitude, a = 1√

2
and a = 1√

16
. A highly

entangled system is obtained when all subsystems are in unison operating at the same bias
��1 = 0.7 and linked by a small amplitude a = √

1/16. The amplitude a gives a measure
of correlation between the subsystems in their ground states. The survival probability P(t) is
high in each subsystem for such a configuration; hence, Q reaches high values for the range
4 � τ � 6. Increasing b (by decreasing a) accentuates the differences between the various
combinations of subsystems and increases the influence of a measuring tool, as is expected
of a strongly correlated multipartite system. Subsystems with larger bias (��1 = 0.7)
undergo higher survival probability with projective measurement, and hence larger Q values
are obtained in multipartite systems with high N values. The influence of the measuring
tool from subsystems with zero bias will be increasingly felt as S is increased. Lower Q
values are obtained when the system configuration is altered to one where S becomes high.
We emphasize the inherent difficulties associated with the recursive nature of measurement
procedures neglected in the simple model adopted here; the measurement of one system
influences a second system being measured, which in turn affects the first system and vice

12
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Figure 6. (a) Meyer–Wallach measure Q (equation (29)) as a function of the measuring parameter
τ , for N pairs of qubit–reservoir systems for which ui = u1 and for S pairs for which ui = u2. Q is
obtained using a = √

1/2, u1(t) = exp(−γ1t/2) and u2(t) = exp(−γ2t/2). γ1 (γ2) is evaluated
using the bias ��1 = 0.7 (��2 = 0) via equation (10). We have used � = 0.6, η = 0.05,
ωc = 1 and T = 0 K for both u1 and u2. N = 0, S = 5 (solid lines), N = 1, S = 4 (dashed),
N = 3, S = 2 (dot-dashed), N = 5, S = 0 (dotted). (b) Same parameters as above but using
a = √

1/16 instead.

versa. Even incorporating such intricacies, we can conclude with the gross result of our
model, that is, the effects of a measurement tool in one or more qubit–reservoir subsystems
can influence the overall entanglement of the array of qubit–reservoir subsystems.

It is important to note that the results obtained so far are generic to any two-level
qubit system undergoing quantum state conversion and not specific to the spin–boson model
undergoing exchanges with a reservoir of harmonic oscillators as considered here.

6. Conclusions

We have examined the dependence of the quantum Zeno–anti-Zeno transition point on the
critical parameters of the spin–boson model. We have also studied the effect of coherent control
via dynamical decoupling schemes prior to the measurement process on the characteristics
of the Zeno–anti-Zeno transition. We find that coherent control via periodic dynamical
decoupling pulses eliminates the Zeno–anti-Zeno transition behavior, depending on the bias
�� and measurement time interval τ of the spin–boson sub-systems. We also show that the
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strength of coupling between qubit and reservoir, number of qubit–reservoir subsystems,
measurement procedures, as well as the initial configuration of qubit–reservoir systems,
play critical roles in entanglement properties of multipartite systems undergoing projective
measurements. Finally, our results may have implications in studies involving the existence
of entangled Zeno subspaces in multipartite systems in which one or more subsystems are
subjected to measurement.
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